
Viterbi’s Algorithm & Trace Back

from 50th Anniversary Commemoration Talk

Keith Kumm, COMSOC Member



Why Commemorate It?

This Could be the Digital Radio Engineer’s 
1915 Moment!

So What’s There to Say (that hasn’t been said*)?
• Where did this epiphany come from?
• Why is Trace Back the very essence of the algorithm?
• Beyond the algorithm, Viterbi almost predicts turbo-codes

* in a lot of places

1



Why Was It Important?
In 1966, Convolutional Codes Were Known,
and Known to be Superior to Block Codes

But ... We Were Missing Out on
Their Full Performance Potential,

And We Knew It!

Along Came Viterbi at UCLA

By Mid 1967, We Knew How to Get at
That Performance!

2



Game Plan

There are Two Fairly Independent Parts
of this 80+ Viewgraph Talk

a) Codes & the Viterbi Algorithm (VA) Decoder
and

b) Code Bounding Theory – Why It Works

SO, a Jump Point is provided to bypass the Theory.
After all, simulation and trials prove the VA works as 
advertised, and many are interested first and foremost 
in how it works as an algorithm and its implementation.

3



Block vs Convolutional
A Brief History of Redundancy at rate 1/2

BPSK uncoded

BPSK repeats, Eb/2

BCH (127,64)          HD decoding

K=7 Viterbi          3SD decoding

(Gc indicated here for Convolutional / Viterbi)

Huge Post-Detection 2-Symbol Combining Loss

Pre-Detection Combining recoups performance
in special cases like fading & jamming

Diversity Schemes fall in between and can 
legitimately improve on uncoded Pe

SNR as E b /N 0  , dB

Er
ro

r R
at

e 
 =

  P
e

(d
ec

od
ed

 o
ut

pu
t)

Most of the Viterbi advantage shown here
is in soft decisions, 3(-bit)SD, but not all of it!

A SATCOM rule-of-thumb goes: 1 dB gain (i.e., 
25%) trades with 1/5th of Total System Cost

Majority & Hamming codes enticed theorists 

Then appeared Golay’s code, then BCH, then R-S
Coding Gain

4

: Coding Requires Distance!



Convolutional Codes

• So-named as code bit encoding superficially resembles FIR filtering
– Hence “convolving” info with code; was a weak analogy, but it stuck

• Simple to build, fast with little complexity
– Perfect for deep space missions, but also small terminals back in the day
– Here’s the K = 3, code rate ½ canonical example

Codewords are “embedded” in code symbol sequence  y ( =  y1 y2 ...  yn  ... )
and occupy a higher dimensional space (than that of information sequence x ) !

5



Why is Dimensionality Such a Big Deal?

• Coding is all about increasing dimensionality

– But hey, so was higher order modulation!

– Pushing up R0 in pre-decision, radio signal space

• But FEC coding is post-decision!

– It’s about datasets in information space
– Codewords lie on vertices of hypercubes

– Density of used vertices goes     as dimensions

– Distance between codewords climbs! 

– Could be “hard decision” (typ. of algebraic)

– Could be “soft decision” (typ. of convolutional)

– High dimensionality starts looking “spherical”

– There’s still an R0 , but now it’s for codeword space

radio

FEC

coding

6



1966

• Convolutional codes existed

– Typical long constraint length K
– They could be almost capacity-

approaching (but not in practice)

• Tree decoding ruled

– Threshold search, Fano algorithm

– LIFO buffer memory

– Computing clock speed-up factor

– R0 = “computational cut-off” rate

• Decoding time is a r.v.

– Decoding errors by buffer failure

– Partial tree search was typical

– Not maximum likelihood

7

mstates

branches y

y 2

y3

y 1

y
1 ’



The Trellis, A Bonsai’ed Tree
• Key is seeing code trees as sequences of encoder states S, or m

– Articulating Viterbi’s move away from tree decoding
– Same two example “branches” (y2, y3) as for previous tree (bold)

“clock”

“ta
ilin

g o
ff”

 (t
o 0

s)

“starting up” (from
 0s)

8

y1 = 00

y
1 ’ = 11

y 2 y 3



Convolutional Codewords

• Differing from (fixed length) Algebraic Code codewords
• Codewords not often discussed, but essential to theory
• “First” codeword composed of  (K−1)/Rc code symbols y
• Each of a length defined by converging with (at some state m)

any other possible codeword of the same length
• Therefore, belonging to a distribution of codeword lengths

9

and so on



Trellis Example, K =3, Rc = ½, {[111]T, [101]T}

By States and Branch 
Code Symbols

but showing no paths 
just yet!

Canonical All-Zeros 

Codeword Path

Transmit Time = Trellis Depth

10



Some Codewords for K =3, Rc = ½ Example
Each Converging with, at least, an All-0s Codeword

Any of these Codewords 
need be compared only
with an All-0s Codeword 
of equivalent length

By Code Linearity

Doing that, we get the 
“free” distance of the 
Codewords, and the 
minimum free distance

A blow-up of such an 
example region will 
display the behavior 
of VA state selection

11



What Does the Game Plan Leave Out?

• Time is Limited: What are we choosing to leave out?
– Encoder State Diagrams
– Code Generator Functions
– Catastrophic codes
– Systematic vs Non-Systematic Codes
– Non-binary & Multi-K Convolutional Codes
– Bandwidth Efficient Codes
– Interleaving
– Concatenated Codes
– BCJR Theory

• However, a Simplest (Canonical) Case Demonstrates It All
– Our friendly Rate ½, K = 3 Binary Convolutional Code

12



1967

• A. J. Viterbi quietly publishes a paper (written in 1966)
– On error bounds for convolutional codes
– and an asymptotically optimum decoding algorithm
– with review help from a computer scientist, L. Kleinrock

• Viterbi employed a very “tight” lower block bound on Pe
– due to Shannon, Gallager and Berlekamp
– Upper bounds remained random coding type (Shannon capacity C )
– R0 took on a new meaning from uncoded & sequentially-decoded
– The new lower bound suggested useful decoding at  R0 < R <  C

• Viterbi’s algorithm employed state searches
– to decide among blocks of state sequences across trailing channel times
– No mention of trellises, but strong hints (by precisely describing them)

• It would take another 2-3 years to “modernize” Viterbi Decoding
– and another 12 years to publish “all of it” in a textbook

13



Jump Point (for Bypassing Theory)

• You Really Only Need Know the Following

– to be Aware of Viterbi Decoding’s Power & Enduring Appeal

1. Key Difference between VA and Earlier Decoding

– Viterbi’s algorithm employed searches over all states
to decide among adversarial candidate blocks of state sequences

2. Consequence of the Convolutional Coding Theorem
– Viterbi-decoded convolutional codes beat the best “block” codes

given “single pass” decoding, i.e. one-shot use of channel data 

3. Conclusions of the Theory & “Genius” of the Algorithm

For that, go to

Jump Reentry is at Slide 28

14



Viterbi’s 1967 Paper

• First, everything is in nats
– It could have been done in bits, BUT our fate was sealed
– e−exp  forms are about the only D(istribution)s easily manipulated ! 

• ln M = logbM lnb ... so  RT = ln M / TM nats/s = ln2 / Tb bps
– Keeping just that in mind, the paper becomes quite readable !

• Viterbi doesn’t bother with “simple” limits on capacity C
– like  C = Hmax =  B log2(1+ C/N0)    and    Hmax, B -> ∞ =  (C/N0) / ln 2
– Rather he asks, how closely can a code approach C with  B ~ k RT ?

• It’s about upper and lower bounds on convolutional codes
– Specifically, a lower bound that closely approaches an upper bound

• And an algorithm that meets the requirements of both

15



Bounds 

• Coding bounds are on decoded error probability
– Not on rate, code rate or bandwidth, etc.  ...   that comes later

• “Block” coding bounds came first and last!
– Viterbi used block bounds “stretched” to a first tight lower bound on 

convolutional codes   ...   and it would produce a very different result !

– To do this, Viterbi stood on the shoulders of R. G. Gallager

• Upper bounds (u.b.) came from Shannon’s random coding
– A huge implication: only the best “fixed” codes can approach u.b.

• Lower bounds (l.b.) evolved from “sphere packing”
– In block coding & the very idea of tightness (l.b. approaches u.b.)

– Viterbi exploited Gallager’s function to upwardly tighten Shannon’s l.b.

– It would involve a lot of math – read first half of textbook

• Bounds are all about proving that some compliant code exists!
– Once in existence, it can be found and exploited

16



Upper Bounds, 1 

• Starts out simple and with tweaks becomes “tighter”

simple union bound

refining the kernel with a bifurcation trick

gets you Bhattacharyya’s (union) bound for one (of multiple) transitions

17



Upper Bounds, 2 

• Bhattacharyya’s unique transition bound gets tweaked by
Jensen’s Inequality via “tightening parameters” λ and ρ

• Reducing a ratio which is already intrinsically <  1

Jensen’s Inequality
plus convexity,
the two biggest
tools in the box 

and again by bifurcation
allowing Gallager’s bound, now over any m and with a near magical choice of λ

18



Upper Bounds, 3 

• Average of Gallager’s (union) bound over all messages
• Becoming quite powerful for discrete or continuous channels
• Ends up bounding   R < R0  � E0 (1,q) but tighter* for ρ < 1

remember, nats ! 

using Gallager’s function

* obsoleting our old W&J friend (in bits, of course)

19



Lower Bounds, 1

• Fundamentally,
ALL the bounds come from Neyman-Pearson & Chernoff!
– Can be side-stepped for upper bounds (u.b.) by way of Unions
– But the best minds resort to N-P&C for lower bounds (l.b.)
– l.b.s nicely captured by Fano’s argument called “sphere-packing”
– It all comes from convexity of the log of all probability combinations

• Viterbi nails l.b.s in Chapter 5 of his 1979 text
– Comes down to diverging paths lower-bounding decoding errors

• These “divergers” become the famous “mergers” of Trace Back
– Convolutional code “stretching” and “overhead” of blocks is key

• l.b.s take a back seat to u.b.s in all that follows
– For this reason, and the great complexity of lower bound theory ...

• We’ll just sketch the route to l.b.s here

20



Lower Bounds, 2

• Neyman-Pearson, two hypotheses a and b

• Now, make two hypotheses, i.e. two codewords! (Gallager)

l.b.

21



Lower Bounds, 3

• Exploiting a “tour de force” sphere-packing (sp) approach

– Viterbi shows, unsurprisingly exponential in form, but in base 2  (!)

where

• In effect, this “squeezes” the l.b. toward an u.b.

– Viterbi shows the two actually converge for   E0 (1) =  R0 <  R < C 
– Meaning, in short, that the Convolutional Coding Exponent is as good 

as we can do (at least for single-pass FEC)

– But, a strong suggestion here that  R ->  C  with the right scheme! 

22

bit error rate is lower bounded by



Summarizing Viterbi’s 1967 Paper

• He uses E0(ρ, q) to map RT  across the domain 0 < R0 < C 
– it would be finally expressed (in his 1979 text) as the

Convolutional Channel Coding Theorem

• He finds two algorithms that adhere to the bounds
– the nonsequential one leads to the modern Viterbi Algorithm
– a “semisequential” variant is computationally too heavy

• The nonsequential algorithm
– bears resemblence to simplex algorithm search for maxima

• but unlike simplex, it may increase or decrease along the way

– exploits dynamic programming ideas (Richard Bellman?)
• cyclic iteration, forwarding of previous calculations
• pre-computing branch metrics (even if only implied)
• these now-simple ideas were revolutionary at the time

23



Convolutional Channel Coding Theorem, 1

(Tim
e-V

aryin
g)

Convolutional

(H
igh D

ensity) Block

R, as a fraction of Cli
m

 ε
 ->

 0
E c

(R
)

a
s
 a

 f
ra

c
ti

o
n

 o
f 
CFor a very noisy 

channel (sort of 

a worst, but also 

a practical case)

here was the 

tantalizing result

R0

6x

Also, the first 

hint of turbo 

codes (!)

l.b.s

u.b.

s

For any DMC, there is a time-varying convolutional code of constraint 

length K, rate b/n, and an arbitrary block length whose Pb in (single 

pass) ML decoding (over all possible codes) is upper bounded by

24



Convolutional Channel Coding Theorem, 2

What’s this Time-Varying (Code) thing, and does it matter?
All practical convolutional codes (I know of) are Time-Invariant (meaning their 
multiplier polynomials never change)!
Time-Varying was simply required by Viterbi’s mathematical bounding strategy, 
based on random codes – including “poor” codes. But it doesn’t matter.
A “good” code is so much better than average, and information is so random (if 
only scrambled), that a best, or even good, Invariant Code is close to optimum.

What’s this High Density thing, and does it matter?
Practical “block” codes (up to the mid-1990s) had “high density” parity check 
matrices. Gallager had invented a “low density” PCM (LDPC*) code in 1961, but 
no one knew how to decode it in a practical way (that would wait until 1994)!
So the only real competitor to convolutional in 1967 was “block” coding, e.g. 
BCH and R-S codes, and some bespoke ones like “burst error correcting” codes.

* Gallager did actually call his capacity-approaching codes LDPC in a 1962 paper

25



Convolutional Channel Coding Theorem, 3
But there was a problem: the u.b. is too loose at low rates!  To wit

One way to improve is to get rid of “bad” codes, a.k.a. “expurgation”
Gallager (the usual suspect) leads with his Expurgated Coding Theorem

where

where the “expurgated version” of Gallager’s function is

26



Convolutional Channel Coding Theorem, 4

For any BSC, there is a time-varying convolutional code of constraint 
length K, rate b/n, and an arbitrary block length whose Pb in (single 
pass) ML decoding is bounded by

Things are getting much better! To wit, a K = 7 exponent jumps from 5 to 9!

Expurgating, a powerful case (Viterbi & Odenwalder, 1969) for R ≤ R0 exploits

27



Convolutional Code Theory, Put to Bed

• Error Rate Bounds Were Important for Several Reasons
1. Put Conv Coding on Solid Foundation – Confidence
2. Encouraged Finding Codes & Algorithms to Meet Them

• Post 1967
1. Encouraged Shifting from Block to Convolutional
2. Encouraged Shifting from Sequential to Viterbi Decoding
3. It was clear that an “outer” very-high-rate code could

“clean up” an “inner” Viterbi decoder for super-low
decoded error rates ...  so-called concatenated coding

28



The Genius of Viterbi’s Algorithm, 1

• It achieves maximum likelihood (ML) decisions
– with minimal computational complexity
– ML compares against every possible information sequence

• Consider a code tree of N code symbol branches
– or N information bits if  q = 2 (binary information input to encoder)
– total number of possible paths is  2N

– with some “reuse,” total possible (exhaustive) “calculations” is  2N/2

• Consider same code as a trellis
– total number of possible adversaries to the set of states is  2K−1

– total exhaustive “calculations” is  N 2K−1

• ML with “only” N = 32 bits  and  K = 7 coding  
– ~ 6 x 104 calcs as a tree, but just  2 x 103 calcs as a trellis
– ratio grows as  2N 2N/2−K ... quickly going out of sight with N

29



The Genius of Viterbi’s Algorithm, 2

• Like Sequential Decoding, Viterbi handles Soft Decisions
– exploiting them deftly, with minimal computational complexity
– also handling erasure and other memoryless channel models

• It outputs Concentrated Bursts of Decoded Errors
– most unlike the long codeword errors of algebraic codes
– perfect for concatenated coding “clean up”

• It has a clean “growth path” to more powerful codes
– only quadruples in complexity for a full ½ dB of added coding gain
– yes, you begin to inch up toward Capacity (but turbo would leap)

• It has a very simple encoder
– perfect for spacecraft, beacons and throwaway devices
– even a sequential decoder requires a lot more encoding complexity

30



The Genius of Viterbi’s Algorithm, 3

• It was natively Continuous Data Capable
– it was even “self-starting” (not needing to find a block SOM)

• It was easily “Blockened” ... Viterbi anticipated Packets
– initially, just zero’ing (both ends)
– but later including efficiency refinements like “tail biting”

• It led easily to Soft Output Viterbi Algorithm (SOVA)
– setting up iterative decoding before it was even discovered

• It could support trellis and multi-h (de)modulation
– the first big jump for phoneline modems, circa 1984 

• It was versatile
– found other applications
– in speech recognition, imperfect channels (ISI etc.)

31



1970s
Linkabit*, almost the only game in town

• Two examples of production convolutional decoders
– S/LS TTL logic and Bipolar RAM, Soft Decisions of course

17”

7”

8 ½ ” ( x 8 ½” x 13”)

LS4816 Sequential Decoder - tree
R = 1 Mbps, K up to 48, Rc = ½ sys or non-
~ 30 lbs, 50 W, $5,000 (1977USD)

became an LS56 LSI w/in 4 years

LV7017 Encoder/Viterbi Decoder - trellis
R = 10 Mbps, K = 7, Rc = ½ non-sys

~ 35 lbs, 85 W, $15,000 (1977USD)

11”

* That Linkabit is long gone!
32



2010s
Irwin Said It Best (about Moore’s Law)

• “Don’t worry about complexity ... the chips will come to us!”
– consider an IoT SoC ASIC* today   ...   4x perf & 105 smaller vs LV7017

11 mm

~ 2 mmA Multimode Wireless Radio Chip
say, 4+ different waveforms

~ neg wgt, 150 mW, $8 (est 1977USD)

Notional** 22 nm Si, Viterbi Decoder (WiFi)
R = 40+ Mbps, K = 7, Rc = ⅓ - ¾ , ~ 15 mW

control

path memory

state memory
ACS
branch/dec I/O

* Resemblance to any mfr, living or dead, is coincidental!           ** best guess

best / Trace Back

<  $0.50 (1977USD) decoder !

33



1979

• Viterbi (& Omura)’s text* appears, again in nats (vice bits)
• 1967 paper is now but one of a 100 bibliography items

– But it’s results are better explained
– Trace Back is just called Path Memory Truncation w/o elaboration
– I.e., Intellectual Property knowhow was still in the driver’s seat !

• Path Memory Truncation
– Effectively, Fig. 5.6 would show about everything

anyone needed to know about Trace Back
– Except the mechanics of how to do it efficiently
– Captured in specific methods like Chain Back

discussed later on

* The should-be-famous Principles of Digital Communication and Coding!
34



The Algorithm, Part 1 ...

There is a Correctly Encoded Trellis Path

It is One Unique Path through the
“Open” State Transition Diagram that is the Trellis

Its Discovery is the Goal
of Any Decoding Algorithm,

including the VA

35



Trellis Example, K =3, Rc = ½, {[111]T, [101]T}

By States and Branch 
Code Symbols

but showing no paths 
just yet!

Canonical All-Zeros 

Codeword Path

Trellis Time or Depth

36



1967 Viterbi Paper Algorithm from 50,000’
A recent block of code symbols has been received
They have been mapped (by the algorithm) into possible unique paths
Each such path ends at one of the possible encoder states at  tnow

First, pick the most likely (i.e. “best”) state, e.g.      , at  tnow
Second, from that best state at  tnow alone, discern (i.e., decode) the 
underlying information back across the Block belonging to unique path 
(successively chosen as     s by the algorithm) leading to that best state

Block

37

To Decode:



The Algorithm, Part 2 ...

There is a Best State

Finding It is the Best Known Aspect of the VA

38



Viterbi Algorithm State & Best State Selection
Overall, at Each Successive Trellis Depth, DO THIS

(what sets the Viterbi Algorithm apart from tree searching
is its consideration of every state for every info bit ... 
the distinction of maximum likelihood decoding)

39



Viterbi Algorithm State & Best State Selection
Steps 1, 2 − Evaluate Received Code Symbol

alternative branch “likelihood metrics,” or LMs

LMs are more convenient expressed as logarithms, or LLMs,
since these can be added, avoiding multiplication

40



Viterbi Algorithm State & Best State Selection
Steps 3, 4   −   The “ACS” Operation

alternative log LM math, without which ACS wouldn’t be ACS !

41



Viterbi Algorithm State & Best State Selection
Step 5  −  Save (Path) Metric Result & Clean Up

so seemingly boring a detail, except that it became
a crucial refinement of the VA with trace back in place

for every state, a likelihood metric (LM) or, equivalently, its LogLM (LLM)

42



Viterbi Algorithm State & Best State Selection
Step 6   −   Save Best State (if so)

again, ruthless efficiency

43



Viterbi Algorithm State & Best State Selection
Step 7  −  Save Identity of Branch Info

the previous state itself could be saved, but that’s wider, i.e., more memory

both a statement of Trace Back length, but also
of Viterbi’s original idea of sliding block decoding

44



The Algorithm, Viewed as a Flow Chart
for (Best) State Selection, Trace Back not shown

( indexed to previous views by Step # )

45



increment memory pointers to t

no

initialize state pointer to i = 0
save m0 to best state m* ; LLMfloor to best state metric LLM (m*)

i = M ?
i ++

for candidate branches bi’, bi” into mi ,
obtain LLM metrics for transitions

yes

from trace back procedure

obtain preceding LLM state metrics into mi

sum up candidate state metrics for mi

Σ LLM (`m’, bi’ ) > 
Σ LLM (`m”, bi” ) 

?  

yesno

select (`m”, bi”) select (`m’, bi’ )

LLM (mi ) >
LLM (m*) ?  

yesno

save mi  to m* ;  LLM (mi ) to LLM (m*)

save Σ LLM (`msel , bi
sel ) to state metric  LLM (mi ) 

to trace back procedure

save identity
of selected

branch for mi

“ACS”

(1), (2)

(3)

(4) (a)

(4) (b)

(5) (a)

(6) (a), (b), (c)

(7) (a)

Viterbi Algorithm States & Best State Selection
Flow Charted

discard identity of
oldest saved selected

branch for mi

normalize LLM (mi ),
for all i, if required, in t

discard (recycle)
branch and state
metric memory

at pointers  t − 1

(5) (b), (c)

(7) (b)

(4)

(8)

(0)

(0)

46



ACS Steps, Captured “on” the Trellis
at One Example State

( indexed to previous views by Step # )

47



Viterbi Algorithm (Best) State Selection, 1

���

  rt = 01

   
m,S( ) trellis

node

= 0, 00( )

   
m,S( ) trellis

node

= 1, 01( )

���

state transitions
completed here

  ̀m = ′m = 0

  ̀m = ′′m = 1

 t − 1  t

 m = 0state #, value

trellis depths (time steps)

   
X̂

t
m

t−1,mt( ) = 00

���

(1) look up PSO*s

* PSO = Preceding State-of-Origin
48



Viterbi Algorithm (Best) State Selection, 2

���

  rt = 01

   
m,S( ) trellis

node

= 0, 00( )

   
m,S( ) trellis

node

= 1, 01( )

���

  ̀m = ′m = 0

  ̀m = ′′m = 1

 t − 1  t

 m = 0state #, value

   
X̂

t
m

t−1,mt( ) = 00

  
λ

t
0, 1( ) = 0

���
(2) Form Branch (L)LMs

49



Viterbi Algorithm (Best) State Selection, 3

���

  rt = 01

   
m,S( ) trellis

node

= 0, 00( )

   
m,S( ) trellis

node

= 1, 01( )

���

  ̀m = ′m = 0

  ̀m = ′′m = 1

 
Λ

t−1 0( ) = 3

 t − 1  t

 
Λ

t−1 1( ) = 4

 m = 0state #, value

   
X̂

t
m

t−1,mt( ) = 00

  
λ

t
0, 1( ) = 0

���

* PSOM = Preceding State-of-Origin Metric  

(3) look up PSOMs*

(Note: m = 1 could be
a prior Best State)

(Note: but m = 0 could not)

50



Viterbi Algorithm (Best) State Selection, 4

���

  rt = 01

   
m,S( ) trellis

node

= 0, 00( )

   
m,S( ) trellis

node

= 1, 01( )

���

  ̀m = ′m = 0

  ̀m = ′′m = 1

 
Λ

t−1 0( ) = 3

 t − 1  t

 
Λ

t−1 1( ) = 4

 m = 0state #, value

   
X̂

t
m

t−1,mt( ) = 00

  
λ

t
0, 1( ) = 0

���

  
Λ

t−1 1( ) + λ
t
0,1( ) = 4 = Λ

t
0( )

(4c) Select
(4a) Add

(4b) Compare

51



Viterbi Algorithm (Best) State Selection, 5

���

  rt = 01

   
m,S( ) trellis

node

= 0, 00( )

   
m,S( ) trellis

node

= 1, 01( )

���

  ̀m = ′m = 0

  ̀m = ′′m = 1

 
Λ

t−1 0( ) = 3

 t − 1  t

 
Λ

t−1 1( ) = 4

 m = 0state #, value

   
X̂

t
m

t−1,mt( ) = 00

  
λ

t
0, 1( ) = 0

���

(5) Assign

  
Λ

t−1 1( ) + λ
t
0,1( ) = 4 = Λ

t
0( )

52



Viterbi Algorithm (Best) State Selection, 6

���

  rt = 01

   
m,S( ) trellis

node

= 0, 00( )

   
m,S( ) trellis

node

= 1, 01( )

���

  ̀m = ′m = 0

  ̀m = ′′m = 1

 
Λ

t−1 0( ) = 3

 t − 1  t

 
Λ

t−1 1( ) = 4

 m = 0state #, value

   
X̂

t
m

t−1,mt( ) = 00

  
λ

t
0, 1( ) = 0

���

  
Λ

t−1 1( ) + λ
t
0,1( ) = 4 = Λ

t
0( )

(6) Declare
Best

53



Viterbi Algorithm (Best) State Selection, 7

���

  rt = 01

   
m,S( ) trellis

node

= 0, 00( )

   
m,S( ) trellis

node

= 1, 01( )

���

  ̀m = ′m = 0

  ̀m = ′′m = 1

 
Λ

t−1 0( ) = 3

 t − 1  t

 
Λ

t−1 1( ) = 4

 m = 0state #, value

   
X̂

t
m

t−1,mt( ) = 00

  
λ

t
0, 1( ) = 0

���

  
Λ

t−1 1( ) + λ
t
0,1( ) = 4 = Λ

t
0( )

((7)) PSO

(7) Save Info “Identity”

... (7)

54



Viterbi Algorithm (Best) State Selection, 8

���

  rt = 01

   
m,S( ) trellis

node

= 0, 00( )

   
m,S( ) trellis

node

= 1, 01( )

���

  ̀m = ′m = 0

  ̀m = ′′m = 1

 
Λ

t−1 0( ) = 3

 t − 1  t

 
Λ

t−1 1( ) = 4

 m = 0state #, value

   
X̂

t
m

t−1,mt( ) = 00

  
λ

t
0, 1( ) = 0

���

  
Λ

t−1 1( ) + λ
t
0,1( ) = 4 = Λ

t
0( )

( 8 ) Addressing of
Trace Back Memory
w/Selected Identity

55



The Algorithm, Part 3 ... Trace Back

The Missing Link in Many Explanations

56



Refined Viterbi Algorithm from 100,000’
Two Relatively Separate Procedures

Trace Back will Avoid
Decoding an Entire Block at Each Depth

Already Covered

57



Viterbi Algorithm
Step 8  −  Decode Depends on Trace Back

The very refinement that made the VA so overwhelmingly dominant

It was never in doubt – blocks had to be extended way beyond K

We knew this from the bounds!

58



Trellis Adversaries, 1
Prospective Paths into Each Current State

K = 3 ,  Rc = ½  Example Code      Encoding All-Zeros Information

(All-Zeros is the Correct Path in this “canonical” example)
(Due to Code Linearity, All-Zeros “exemplifies” any actual codeword)

Best States

Adversary Paths
( strongest to weakest
path metric at a future
“decision depth”)

current cycle

59

For  Rc = ½ Binary Codes
There are always

2K−1 Possible Codewords
Each called an Adversary
defining a legit Path to it,

one for every State
at any given Depth 



Trellis Adversaries, 2
Errors & Paths from a Decode-able Channel History

K = 3, Rc = ½  Example     Error Runlength Weight  < dfree, min / 2

2 single errors

In this Example
Any Trace Back Length ≥ K would yield a Correct Decision !

60

è Corrected Error

è



Trellis Adversaries, 3
Errors & Paths from an Undecode-able Channel History

K = 3, Rc = ½  Example     Error Runlength Weight  ≥ dfree, min / 2

3 single errors

In this Example

No Trace Back Length would yield a Correct Decision !
Any Code and Decoder can make a Decoding Error

61

è Decoding Error

è



Trellis Adversaries, 3
A Fatal Merger on the Decoder Trellis

Mergers are “Backward-Looking” along Branch Segments during Trace Back
Viterbi called them “Diverging” Paths in his Paper, in the Forward Time Sense

No Such Thing as a Forward Merger !

For All-Zeros Codeword Sent, This Merger Can Only Happen due to an Error Cluster !
It WILL Result in Decoded Errors – Since the 11 Path from State 00 is Also Cut Off !

62

S = 01 is a Best State
due to an error cluster 
exceeding the dfree of
the code



Trellis Adversaries, 4
Path Metrics Along the Two Best Adversaries

K = 3, Rc = ½  Example When Error Runlength Weight  ≤  dfree, min / 2

All Zeros Sent,  One Error (in Runlength)

Trace Back of Just One Branch is Enough !
63



Trellis Adversaries, 5
Path Metrics Along the Two Best Adversaries

K = 3, Rc = ½  Example When Error Runlength Weight  ≤  dfree, min / 2

All Zeros Sent,  Two Errors (in Runlength)

Longer Trace Back is Required (or Else an Error) !
64



No Length of Trace Back is Sufficient to Avoid Error !

Trellis Adversaries, 6
Path Metrics Along the Two Best Adversaries

K = 3, Rc = ½  Example When Error Runlength Weight  >  dfree, min / 2

All Zeros Sent,  Three Errors (in Runlength)

65



Decoding in Viterbi’s 1967 Paper
For q = 2, A Tale of Two* Adversaries

The Nonsequential Algorithm (Part IV) Describes State Metrics and Decoding ! 
State Metrics become Path Metrics over any Block beyond  L = K 

2 Examples for
K = 3, Rc = 1/n 

Limiting the
Algorithm’s
Consideration to
2K−1 Alternative 
Choices Everywhere
(Beyond the first K 
“Branches”) was the 
Blockbuster 
Breakthrough
of the VA

* always being 
the “best” and 
the “next best”  

66



Decoding Beyond Viterbi’s 1967 Paper, 1
A Refined Viterbi Algorithm by Trace Back Decoding

“Start-Up” Example
K = 3, Rc = 1/n 
Trace Back 3K

VA’s Blockbuster 
Breakthrough
Still Prevails
BUT Each Block
now Overlaps the 
Previous

Buys Advantage 
of Many Blocks 
and the Most 
Likely Decision 
Decode of Each 
Oldest Branch, 
One by One

Advance & Do It Again!

67



Decoding Beyond Viterbi’s 1967 Paper, 2

A Trace Back Decoding Example for Longer Blocks

“Jump-In” Example

K = 3, Rc = 1/n 
Trace Back 3K

It Doesn’t Matter

Where the 

Algorithm

Begins!

Notice that

L = K+1
Just Barely
Works, i.e.  Trace 

Back 1K
Is Not Robust!

Advance & Do It Again!

68



Keys to Trace Back Length, 1
Two Factors Seldom Mentioned Together

• Factor 1: Behavior of the LLM branch λt
– “double errors” have a big penalty relative to single errors

• Factor 2: Mergers 
– where adversaries share a common “root” Λt(m)

• Recall our canonical trellis
– binary  K = 3, Rc = ½
– just to demonstrate branches 

• Typical  K = 7, Rc = ½ 3SD case 
– channel  Eb /N0 = 5 dB

• yielding output Pb = 10 −6

– corresponds to  p = 3 x 10 −2

69



Keys to Trace Back Length, 2
Single Error (on a Branch) Case

• Comparing transitions at Mergers
– we reverse the state transition nomenclature

• Consider

0 1

• At any p ->   log10(...) = 0

70



Keys to Trace Back Length, 3
Double Error (on a Branch) Case

• Now Consider

1 1

• p = 3 x 10 − 2   ->   log10(...) ~ 3  (−3)

71



A Key to Trace Back Length, 4
Merger Double Error Impact

• When double errors strike at a Merger
– A large deficit opens up two adversaries
– It can take longer than 1K to resolve even for “isolated doubles”

• A double error can be part of a “error cluster”
– Clusters are characterized by a “runlength”
– Consider runlengths as a multiple of K
– Added burden of nearby single errors opens up the deficit wider
– Eventually, it can take n K , n > 2, 3, 4 to resolve for larger K

• Sure, these clusters are exceptionally low probability
– On a discrete memoryless channel
– But they must either be resolved reliably
– Or else be lower in event probability than the desired output Pb

72



Trace Back Memory (TBM)

There are Two Basic Schemes

• Factors Common to Either

– TBM must be Constructed Going Forward

– Total Bits Constant Regardless of Info Rate

• High Info Rate Scheme

– Parallel TBM Accessed in One Cycle

– Expensive, Unavoidably Large Footprint

• Lower Info Rate Scheme

– Serial TBM Access in m K Cycles

– Much Cheaper, Potentially Tiny Footprint

73

HS Parallel

4 x (2K−1 x 8) RAM chips

doubled for swapping 

LR Series

1 x (2K+3 x 1) RAM chip

doubled for swapping



Chain Back

• J. Heller’s great idea, mainly for “Series” VA Decoding 
• You get Trace Back Memory addressing almost for free!

– Exploiting “identities” (VA State Selection Step 7) already saved

In Series VA form,
do this procedure
at every state m

It runs in parallel 
without any added
time overhead

For K = 7, there are 
enough states to 
Trace Back 64 trellis 
times, but 35 suffices

74



Implementing a Practical Decoder
In Easy Steps onto a Block Diagram

75



The Viterbi Decoder, In 10 Steps

• Build Up a Complete Decoder as a Block Diagram
– In Increasing Complexity as Each Prior Build Implies the Next Blocks

• Start from ACS Math/Logic, the “Core” VA Operation
– Viterbi Considered ACS the VA’s Essential Compact Expression

• ACS with its Surrounding I/O Blocks Will Assume that
– Decoder is Synchronized to Channel Symbols

– Channel Symbols are Translated, State-by-State, into Branch Metrics

– This latter shown explicitly as part of ACS

• The “State Clock” is Not Shown for Clarity
– State Clock is 2K−1 times rate of Step (Forward in Trellis) Clock

– State Clock distributes to State Address (counter) and other logic

76



Building Up a Viterbi Decoder, 1
Essential Parts of the “Core” Operation

The Decoder is assumed to be “in Sync” with the Channel
This is easily accomplished in any of several ways, not our focus here

77



Building Up a Viterbi Decoder, 2
Sorting for Best State at Each Trellis Depth

78



Building Up a Viterbi Decoder, 3
Providing successive State Addresses to Core Operation

79



Building Up a Viterbi Decoder, 4
State Info into ACS are Metrics from Two Halves of State Space

80



Building Up a Viterbi Decoder, 5
State Info out of ACS = Updated Metrics of the Two Next Halves

81



Building Up a Viterbi Decoder, 6
Selected Identity (Bit) of Each State is Saved over Many Depths

82



Building Up a Viterbi Decoder, 7
Path Memory Write-once & Read-backs Requires Control

83



Building Up a Viterbi Decoder, 8
Decisions are the oldest Read-backs from Path Memory

84



Building Up a Viterbi Decoder, 9
At Each New Depth, State Memory Banks are Simply Swapped

85



Building Up a Viterbi Decoder, 10
To Keep Math within Limits, Normalizations Occur as Needed

86



Building Up a Viterbi Decoder, Complete!
While I/O & Support is yet to be Added, Basic Ops are Complete

87



Finally, Returning to Bounds
Trace Back and Critical Runlength

• We alluded earlier to Viterbi’s Fig. 5.6 in his 1979 text
• Chasing memory truncation, Viterbi sought to bound the 

average Pe due to a longest unmerged path, k beyond K
• Directly involving error runlengths (error cluster lengths)

– He needed to use a critical length λcrit to maximize this bound 

where

and

88



The Importance of Fig. 5.6 (Viterbi & Omura)
Trace Back and Critical Runlength

• So here it is, the kcrit - what does it mean?  It means ...
• A convolutional code with ML decoding can approach capacity iff

decoding can span an expected longest error cluster runlength

R
R0 C 

• It also suggests, by its very existence, that there is such a way!

89

beyond
all the codes

we knew in 1979
(presaging turbo codes)



Thank You
Design Great Stuff


